CSC EMU Muon Sorter (MS)

Status
Plans

M. Matveev

Rice University

August 27, 2004
Overview

• Functionality
 - Data formats
 - VME/JTAG interface
 - FPGA mezzanine
 - Firmware

• Tests done up to date
 - Standalone tests
 - Latency
 - SP-to-MS test
 - Beam test

• Plans for production and future tests
CSC EMU/Trigger Electronics
One board for both endcaps, resides in the middle of the Track Finder crate
Receives up to 3 LCTs from each of 12 Sector Processors over custom backplane
Does sorting “4 best out of 36” muons based on 7-bit “Quality” pattern
Transmits 4 best muons in ranked order to GMT over LVDS cables
SP – to – MS Data Format

Frame	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00			
-------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	
1 SE	BC0	ETA	PHI																																
2 SP	BX0	HL	C	VC	RANK																														

<table>
<thead>
<tr>
<th>Comment</th>
<th>Synch</th>
<th>MUON 3</th>
<th>MUON 2</th>
<th>MUON 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Synch</td>
<td>MUON 3</td>
<td>MUON 2</td>
<td>MUON 1</td>
</tr>
</tbody>
</table>

Here:
- **RANK** PT LUT output, 5 bits PT and 2 bits Quality
- **ETA** Pseudorapidity
- **PHI** Azimuth coordinates
- **VC** Valid Charge - 8th bit of PT LUT output
- **HL** Halo muon trigger
- **C** Charge or muon sign
- **BX0** The least significant bit of Bunch Crossing Number (BXN ranges from 0 to 3563).
- **BC0** The Bunch Crossing Zero flag marks bunch zero data.
- **Synch** Synchronization and spare bits
- **SE** Synchronization error (data out of synch)
- **SP** Spare bit

- **32-bit** GTLP point-to-point links from each SP
- **Data is transmitted in two frames at 80Mhz**
Has been agreed with the GMT Group

SCSI-3 68-pin AMP/Tyco 787171-5 connectors

Texas Instruments SN75LVDT386/LVDS387 receiver/driver chipset

Halogen-free cables, 9m estimated length for the CSC Track Finder
Muon Sorter Mezzanine and Main Boards

- Xilinx XC18V04 EPROMs
- Xilinx XC2V4000-FF1152 FPGA
• 12 links from Sector Processors, 12x32=384 inputs @ 80Mhz
• 4 links to LVDS transmitters, 4x32=128 outputs @ 80Mhz
• 1 status link (“winners”) back to SP’s, 24 outputs @ 80Mhz
• VME and CCB interfaces, ~80 inputs and outputs
• Input, intermediate and output FIFO buffers for testing purposes
LUT Conversion

Rank[6..0] Pt_GMT[4..0]
 | Quality_GMT[2..0]
 ‘0’ ‘0’
 ‘0’
Phi_SP[4..0] Phi_GMT[7..0]
SP_ID[3..0] LUT 512x8
 D[7..0] D[4..0]
Eta_SP[4..0] Eta_GMT[5..0]
SP_ID[3..0]

1 muon out of 4
Current Status and Future Tests

• 4 boards were built in 2003, 3 boards are completely assembled

• Have 2 mezzanines assembled (both FPGA are free donation from Xilinx)

• Two MS boards with mezzanines have been tested on the bench (next slide)

• Have been tested with Sector Processor prototype (next slide)

• Have been checked in the Track Finder crate during beam test at CERN in June 2004 (next slide)

• Do not require irradiation test
Standalone Tests of MS

- Need Track Finder crate, CCB, VME controller

- What was checked
 - Sorting Logic
 - LUT RAM’s
 - FIFO’s
 - Interface to GMT
 - VME/JTAG interface

- Load test patterns into FIFO_A, run them at 80Mhz through the sorter, check result from FIFO_B, FIFO_C, FIFO_D
 - >2M iterations without errors
VME/JTAG Interface

Xilinx XC2V4000 mezzanine FPGA and associated EPROM’s may be loaded/programmed from:

- Xilinx Parallel Cable IV
- Fairchild SCANPSC100F JTAG controller under VME control

National Semiconductor provides a free software to operate SCANPSC100F controller, that was adopted by UF to work via VME using SBS 620 Master.

- We have successfully run this software to program 4 EPROM’s residing on the mezzanine card
- Program time is ~1 min (~4 min over Xilinx Parallel Cable IV)
MS Latency

150 ns
Latency (2)

LVTTTL-GTLP-LVTTTL + backplane delay

LVTTTL-LVDS-LVTTTL + 1 m SCSI cable
• Load random test patterns into test FIFO (Test Point 3)
• Send @ 80Mhz to Muon Sorter
• Check data from FIFO_B and FIFO_C on MS board
• Check data from spy FIFO after Pt LUT on SP board
• Check winner bits from MS spy FIFO on SP board

>1M iterations without errors
Beam Test at CERN, June 2004

- Muon Sorter was receiving muons from 1 (2) Sector Processors during structured beam

- “Winner” bits were recorded by SP

- Run 380: ~12K events with 1 muon, 20 events with 2 muons, no events with 3 muons. One ambiguous event.

More details at http://www.phys.ufl.edu/~acosta/tb/talks/csctb04_sp_results.pdf
Cost Estimate

MS main board
• Components ... < $1000
• Services (PCB & front panel fabrication, assembly) < $1000

Mezzanine card
• Components and services (FPGA, assembly) $2500
Production and Testing Plans

• Design documentation is available on the web at http://bonner-ntserver.rice.edu/cms/projects.html#ms, including
 - specification
 - schematics
 - configuration file for EPROMs

• Need more tests with at least 2 SP and/or 12 Muon Tester cards (until December of 2004)

• Need to test with the GMT receiver card (never been done before). This fall or early next year?

• Plan to complete all tests by summer 2005.

• Based on results, we should decide if the final PCB should be built (currently have 5-6 minor PCB fixes).